Mrs. Lipman’s 10th-grade biology students are not completing their assignments and are doing poorly on tests. They complain to Mrs. Lipman that they are unable to understand what they read in the science textbook, and they do not always understand the meaning of technical terms. Although a few students complete their assignments, others either give up after partially completing them or do not even attempt to do the work. They are an ethnically diverse group of boys and girls with varied learning abilities and academic achievements.

A review of relevant literature and dialogue with other educators suggested that implementing a variation of the flipped classroom1 might alleviate the students’ reading comprehension problems, increase their motivation, and consequently improve study habits, homework completion, and test grades. This article shares an action research regarding the impact of the flipped classroom approach on a group of biology students at the secondary level.

Importance of the Research

While the specifics of this study relate to the discipline (biology) and its specialized vocabulary, the main emphasis is on addressing the reading and comprehension needs of the learners. Providing an environment for student success is the educator’s responsibility. Many classrooms today are very diverse and include English language learners (ELL)/or students with limited English proficiency, as well as a variety of students representing different races and ethnicities, levels of socioeconomic status, learning disabilities (LD), and other exceptionalities.2

Referring to Christ’s teaching ministry, Ellen White wrote: “In these first disciples was presented a marked diversity they represented widely varied types of character.”3 In the midst of this diversity, Christ met His audiences where they were, and men and women from various backgrounds found hope in His teaching. And “In the Teacher sent from God, all true educational work finds its center.”4 Likewise, teachers today should devise and identify instructional methods that help them effectively reach all of the students entrusted to them. In an attempt to find an effective approach, Mrs. Lipman implemented a flipped classroom model.

Flipped Classroom—Definition

Flipped classroom (flipped learning) is defined by the Flipped Learning Network as follows: “Flipped Learning is a pedagogical approach in which direct instruction moves from the group learning space to the individual learning space, and the resulting group space is transformed into a dynamic, interactive learning environment where the educator guides students as they apply concepts and engage creatively in the subject matter.”5

The term “flipped classroom” came into use in 2007 when Jonathan Bergman and Aaron Sams6 started using it in their high school science classes in Woodland Park, Colorado, U.S.A. However, as early as 1993, Allison King7 wrote an article promoting the use of class time to construct meaning rather than to transmit information. In 1997, Eric Mazur8 published “Peer Instruction,” which described how he de-emphasized information transfer (lecture-driven instruction) in...
the classroom, and used that time to coach students’ learning. In 2000, Lage, Platt, and Tregil READ the Journal of Adventist Education • July-September 2017

verting the Classroom: A Gateway to Creating an Inclusive Learning Environment.” Their research focused on the benefits of moving information presentation out of the classroom into the realm of technology and media, where it can be more beneficial to individuals with varied learning styles. Salman Khan also contributed to the flipped classroom when he started recording video lessons in 2004.

In a traditional teacher-centered classroom, a lot of time is spent lecturing and very little time doing interactive activities. This creates the risk of either inadequately covering the curriculum in the required amount of time or overwhelming the students with homework that they have very little time to complete outside of class. In the flipped classroom, learning is more student-centered. This method improves student engagement with content, increases and improves faculty contact time with students, and enhances learning.

Although the literature bears rich evidence of the benefits of the flipped classroom for children with exceptionalities, this approach does not substitute for pedagogy designed to meet the unique needs of children who have learning disabilities or those who are gifted and talented.

Action Research

Since reading comprehension of science textbooks was a problem localized to the 10th-grade biology class at Bass Memorial Academy in Lumberton, Mississippi, U.S.A., action research was considered the most appropriate investigative methodology. Action research is defined by the Richard Sagor as follows: “a disciplined process of inquiry conducted by and for those taking the action. The primary reason for engaging in action research is to assist the ‘actor’ in improving and/or refining his or her actions.” In this study, the actors were the 10th-grade biology students and their teacher.

Action research focuses on a local problem and attempts to produce local change. It accommodates the use of both quantitative and qualitative methods of data collection and analysis. Action research is always relevant to the participants because it has the potential to make a real difference in the students’ lives.

According to Sagor, action research should proceed as follows: Select a focus, do a literature review, ask questions, collect and analyze data, report results, and take action. Because action research is local, results are not generalized to other groups. Likewise, control or comparison groups are not usually involved. Sagor stated that the central principles of action research are professionalizing teaching, motivating and making faculty more effective, meeting the needs of an increasingly diverse student body, and achieving success with “standards-based” reforms.

Problem Background

Students’ reading comprehension struggles are generally less common and less pronounced in other content areas, most likely because of the uniqueness of terms connected with the sciences. Students need to master reading and understanding of expository text in order to perform well on tests, complete homework, stay motivated, and develop positive attitudes toward reading science textbooks. It is therefore crucial for educators to implement interest-building strategies to help students succeed.

Reading expository text in science may be a difficult task because many secondary students struggle with reading in general. Primary and elementary students often lack exposure to reading informational texts because teachers focus on stories. Reading expository, informational text becomes a challenge, then, when these students enter secondary schools, and science textbooks, media, trade books, and Websites challenge students’ comprehension skills.

Johnson and Zabrucky criticize science textbooks for containing too many vocabulary concepts; presenting too many ideas at once, lacking clarity, and failing to transmit vital science knowledge. When students have difficulties understanding the text, it is easy for them to stop paying attention and not complete assignments. In addition, students have difficulties in finding the necessary information to carry out specific tasks due to their lack of proficiency in what seems to them a “foreign language” as well as the lack of accuracy in scientific vocabulary. These are some of the factors that contribute to the difficulties Mrs. Lipman’s 10th-grade biology students experienced when reading biology textbooks.

The difficulty is magnified for students with reading disabilities, so they will need to spend most of their time trying to decode words and/or understand unfamiliar vocabulary. Students with learning disabilities often experience difficulty with fluency, decoding, and word recognition, which interferes with their ability to adequately comprehend text. Based on the preceding revelations, it was necessary for Mrs. Lipman, the 10th-grade biology teacher, to implement an instructional strategy that would likely ameliorate and alleviate her students’ academic problems.

Purpose

Consequently, Deril Wood and Caroline Lipman conducted mixed-methods action research to seek answers to the following questions:

1. Do flipped-classroom strategies influence biology students’ performance on chapter tests?
2. How do reading-comprehension strategies used in flipped-classroom settings affect students’ attitudes toward out-of-class assignments and in-class activities?
3. How do students describe their adjustments to a flipped-classroom setting?
4. How can the outcomes help educators who are interested in using the flipped-classroom strategy?

Significance of the Study

Researchers Wood and Lipman concluded that students are likely to benefit from the flipped-classroom approach and to improve their performance on tests and assignments. In addition, other educators can learn from the research and implement strategies to address similar problems that they encounter in their classes.

Research Design

Wood and Lipman obtained qualitative information by using the Flipped Classroom Student Questionnaire with open-ended questions. The first set of quantitative data was also obtained from the same questionnaire, using questions on a Likert-type scale. The second set of quantitative data came from the participants’ scores on three pre- and post-assessments that included intervention between pretests and posttests.

Participants

Twelve 10th-grade students (ages 15 and 16), five males and seven females, from a single biology class, participated in the study. They were randomly paired for in-class activities. Two of the students demonstrated grade-level reading comprehension skills in reading the science textbooks. The class consisted of two African-American, five Caucasian, and five Hispanic students. The five Hispanics were ESL students who lived in homes where Spanish was frequently spoken. Two students had been officially diagnosed with learning disabilities, and one with ADHD, which the Learning Disabilities Association of America stipulates is not a learning disability, but can make learning challenging.

Permissions

After securing the necessary approval from the school administration and signed consent from parents, as well as willingness to participate on the part of the students, data collection activities began.

Instruments and Academic Assessments

The instruments used in this research were teacher-made tests, based on a chapter in the biology unit. Two 15-item and one 25-item tests comprised the assessments. The tests consisted of selected-response items, which required students to select from among a list of answers provided by the teacher; and constructed-response items, including fill-in-the-blank and short answer, which required students to create answers to open-ended questions. One point was given for a correct answer to each item.

Flipped Classroom Student Questionnaire

The Flipped Classroom Student Questionnaire contained 10 questions. The first six questions asked participants to rate their level of involvement in, and commitment to, the activities of the research, using a Likert-type scale. These were followed by four open-ended questions on the second section of the Flipped Classroom Student Questionnaire, which required students to create brief statement answers.

- **Validity:** The assessments were teacher-made tests, which sampled the content of the reading materials and videos. Validity further assumes that the results of the assessments were used appropriately. Both content and consequential validity were assured. In designing the study, it was required that the process be monitored to ensure best practices and evaluated for effectiveness of the strategy on students’ academic performance. In accordance with the theory of Backward Design, the academic assessments and Flipped Classroom Student Questionnaire were in place prior to the beginning of the instructional activities. The assessments were carefully aligned to the content to be covered in the instructional activities. Students’ scores from these assessments were used to check the effectiveness of the strategy.

- **Reliability:** Because of the small number of participants, (N = 12), Test-Retest reliability would be invalid. Computing Cronbach’s Alpha would also be affected by the number of participants. However, each pretest and posttest targeted specific domains within the content, and the items were representatives of the domain.

Preparation and Orientation

The biology class met three times per week: Monday and Wednesday for 90 minutes each, and Friday for 50 minutes. Data collection took place during these sessions. First, the students were oriented to the flipped-classroom procedures and how the research would proceed, including in-class and out-of-class activities and assessments. On the Thursday prior to implementation, Mrs. Lipman added each new concept and tools to eBackpack (a cloud-based learning-management system that makes it easy to assign, annotate, collect, and grade assignments on any Internet-connected device) to ensure student access. A majority of the 10th-grade biology students lived in the dorm or other campus housing and had e-textbooks that they could access online. Students from the community lived off campus and might not have had access to the Internet. If there had been students in the class who did not have Internet at home, they could have used their free periods during the school day and after-school study hall to access the study information.

Implementation and Data Collection Procedures

During out-of-class activities, students were expected to read selected text from the e-textbook and other provided sources, and take notes using specified reading strategies. Participants were taught how to use reading-comprehension strategies such as KWL, morphemic analysis, anticipation guide, and SQ3R based on the text that was given. (See Box 1.) Fur-
ther, they were to watch short video clips and summarize the content of lecture videos and animated video clips. The videos were short—five to seven minutes each—with subtitles and engaging graphics, suitable for students with diverse learning styles and short attention spans. The students also had to write three questions about the content of the videos or the text that they read and provide answers for these questions.

In-class activities were designed to be engaging. These activities were aligned with out-of-class activities and provided individual, group, or whole-class involvement. They included completing study guides with different types of questions (fill-in-the-blanks, matching, true-false, etc.); inquiry-based learning and problem solving in labs; and peer teaching using jigsaw and discussions. In-class activities also included pretests on Mondays.

Students received feedback from the pretest, followed by several interventions: jigsaw group, class discussions, interactive activities, worksheets, and review. These in-class activities also included a question-and-answer period to address any misunderstandings and to clarify concepts; and pair drilling in preparation for the posttest. Peer tutoring and small groups were used for other interactive activities and labs.

A posttest identical to the pretest was administered each Friday. The tests were done individually and independently. Students were not allowed to communicate during the tests or to use textbooks or other sources.

At the end of the research period, the students completed the Flipped Classroom Student Questionnaire, working individually without communicating. At the end, they turned in the questionnaire anonymously.

Data Analysis and Results

The small number of participants (N = 12) restricted the analysis to descriptive statistics for quantitative data and clustering of statements for qualitative data.

<table>
<thead>
<tr>
<th>Terms</th>
<th>Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>KWL</td>
<td>KWL is a strategy that guides students through reading a text or a learning process. K = what students Know about the text/topic; W = what students Want to know about the topic; and L = what students say they Learned in the process. http://www.nea.org/tools/k-w-l-know-want-to-know-learned.html</td>
</tr>
<tr>
<td>Morphemic Analysis</td>
<td>Morphemic Analysis is a strategy used to determine or infer the meaning of a word by examining its important parts such as prefix, suffix, and root. http://ci5451literacystrategiescollective.pbworks.com/w/page/6064036/Vocabulary%20Morphemic%20Analysis</td>
</tr>
<tr>
<td>Anticipation Guides</td>
<td>Anticipation guides are a reading-comprehension strategy that is used before reading to activate students’ prior knowledge and build curiosity about the text. http://www.adlit.org/strategies/19712/</td>
</tr>
<tr>
<td>SQ3R</td>
<td>SQ3R is a reading comprehension strategy that helps students think about the text they are reading while they are reading it. http://www.adlit.org/strategies/19803/</td>
</tr>
<tr>
<td>Jigsaw</td>
<td>The jigsaw teaching technique is a way of organizing classes into groups so that students become dependent on one another to succeed. http://www.teachhub.com/jigsaw-method-teaching-strategy</td>
</tr>
<tr>
<td>Student Choice Activities</td>
<td>Student choice activities are activities that students chose when given the chance to select activities to reinforce the learning. https://www.responsiveclassroom.org/academic-choice/</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 1. Scores for Pre- and Post-Assessments in Biology Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>12</td>
</tr>
</tbody>
</table>

Table 1 shows each participant’s raw score on each of three pretests and posttests. In this table, substituting the numbers 1-12 for their names protects the identity of the students. Missing values on the table represent student absences when the assessment was performed. The highest possible score on each test was 15, 25, and 15, respectively. General observation of the
table reveals growth from pretest to posttest. Three participants’ achievements were particularly noteworthy, one of whose test scores went up from 53 to 100 percent, from 60 to 100 percent, and from 33 to 93 percent. Figures 1-3 graphically present participants’ performance on each of the three pretests and posttests.

On the Flipped Classroom Student Questionnaire, a majority of participants gave positive feedback regarding their flipped classroom experience. Eighty-six percent of the participants reported watching the flipped videos on time. Sixty-seven percent said they found reviews at the beginning of class helpful. Seventy-five percent reported needing the class activities after watching the videos in order to be confident about the material being studied. Ninety-two percent reported being “extremely confident” or “somewhat confident” after viewing the videos and in-class activities. Twenty-five percent reported that they neglected to take the
out-of-class activities seriously and were putting in little or no effort, and 17 percent reported that they neglected to put sufficient effort in the in-class activities.

The flipped classroom produced positive results among the students in the 10th-grade biology class where the action research was conducted. An overwhelming majority of the participants increased their test scores from pretest to posttest on pretest and posttest 1, pretest and posttest 2, and pretest and posttest 3. One student maintained the identical score on pretest and posttest 2. Students responded positively to questions about the implementation and benefits from the flipped-classroom strategy. A majority of students prefer the flipped classroom over a traditional instructional approach.

Responses to the open-ended questions were grouped by themes and are shown in Table 2.

Impact of Instructional Strategies

- **Out-of-Class Activities** (including videos, PowerPoint slides, KWLs, SQ3R, and Anticipation Guide)—prepared students to work independently and to contribute more during class time. These approaches also placed less demand on the teacher to provide information.

- **In-Class Activities** resulted in students taking responsibility for their learning and produced improved test scores.

- **Jigsaw Groups** required students to become knowledgeable about the content so they could share with their peers.

- **Cooperative Learning** allowed students to help one another. They had to first communicate with their classmates, asking and seeking answers to their questions, before going to the teacher for help. This approach was rewarding for both students and teacher since the students learned from one another, and this freed the teacher to help the students who needed more assistance.

- **KWLs, SQ3R, and Anticipation Guides** prepared students to get the most out of the content they read. These reading-comprehension strategies helped the students analyze content and take notes in order to comprehend what they read.

- **Videos and PowerPoint Slides** provided different perspectives on the concepts covered by the content.

- **Resources** were made available for students to refer to whenever necessary.

Influential Factors

Certain factors may have influenced the positive outcomes from the strategy. The students had the opportunity to complete the out-of-class activities such as watching videos and reading selected texts before taking the pretests. However, they took the posttests only after participating in several out-of-class and in-class activities such as jigsaw, group discussions, labs, and reviews, which resulted in higher scores than on the pretests. Thus, it appears as if the in-class activities had a positive influence on students’ performance on the chapter tests.

Factors such as inclusion bias/non-probability sampling, and response bias may have impacted the study in other ways. Inclusion bias occurs when the group that is used for sampling is the one that is available. Inasmuch as the biology class was the class with the problem, it was also the available group. The pool of available participants was small and prohibited random sampling of participants. A larger group of participants might have produced different results. Response bias on the Flipped Classroom Student Questionnaire could have occurred consciously or unconsciously. For example, students who declared in class that they did not watch the videos did not record an opinion about the usefulness of the

<table>
<thead>
<tr>
<th>Table 2. Responses to Open-ended Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open-ended Questions</td>
</tr>
<tr>
<td>What have you liked best about the flipped classroom this past two weeks?</td>
</tr>
<tr>
<td>What part of the flipped classroom would you like to see changed for the next year?</td>
</tr>
<tr>
<td>What could I do for you to help support you more in the flipped classroom?</td>
</tr>
<tr>
<td>What is the most helpful part of the flipped classroom?</td>
</tr>
<tr>
<td>Grouped Participants’ Responses</td>
</tr>
<tr>
<td>• Availability of videos helpful</td>
</tr>
<tr>
<td>• Cooperative and collaborative learning</td>
</tr>
<tr>
<td>• Weekly assessment and feedback on growth</td>
</tr>
<tr>
<td>• Better time management</td>
</tr>
<tr>
<td>• More resources were available to learn from</td>
</tr>
<tr>
<td>• Nothing</td>
</tr>
<tr>
<td>• Return to traditional teaching methods</td>
</tr>
<tr>
<td>• More videos, more group activities</td>
</tr>
<tr>
<td>• More variety in classroom activities</td>
</tr>
<tr>
<td>• More explanation of videos and activities</td>
</tr>
<tr>
<td>• More help with homework and classwork</td>
</tr>
<tr>
<td>• Inclusion of worksheets after activities</td>
</tr>
<tr>
<td>• More videos</td>
</tr>
<tr>
<td>• Repeating the information over and over again</td>
</tr>
<tr>
<td>• Visuals of the video</td>
</tr>
<tr>
<td>• Time saved</td>
</tr>
<tr>
<td>• Information from PowerPoints and videos</td>
</tr>
<tr>
<td>• Discussions</td>
</tr>
<tr>
<td>• Nothing</td>
</tr>
</tbody>
</table>
videos on the questionnaire, probably because they did not want to be the only ones to respond in a negative manner. Perhaps they thought that their response might affect their grade, even though the questionnaire was anonymous. In addition, the Flipped Classroom Student Questionnaire was administered at the end of the last day of class, during the week of finals, so the stress of finals could have caused some pressure on the students to respond without having given much thought to the question.

Limitations
The results of the research must be viewed in light of these limitations, which should be considered in attempts to replicate the study:

- Time factor—This research was conducted within a short period of time; therefore, students didn’t have sufficient time to deeply absorb the effects of the flipped-classroom experience.
- More resources—it was challenging to find videos and activities that addressed the content being studied. Students complained about the non-animated videos. They preferred the animated ones, but those were scarce. If the strategy was implemented for a full semester, finding resources would be even more challenging.
- Reliable technology—Reliable technology, particularly Internet and Wi-Fi, are necessary for access to online learning materials.
- The number of participants—a minimum sample size is required for inferences to be drawn, even at the local level. The number of participants did not meet the criteria for t-test analysis of the pretest and posttest scores.
- Reliability of assessments—it was not feasible to establish a reliability estimate, due to the small number of participants.

Implications
The findings of this research are limited to the participants in this study. Nevertheless, after conducting this research, we believe that certain recommendations can be offered to educators:

1. Become aware of the diversity in the classroom.
2. Identify students’ specific needs.
3. Identify the resources and strategies that will meet the needs of the students.
4. Intentionally plan differentiated instruction.
5. Consider using a variety of strategies such as Science WebQuest, a glossary diary, learning centers, independent study, tiered assignments, student choice activities, and group presentations.
6. Encourage students to write their own storyboards and create their own podcasts/videos to share with their classmates.
7. Investigate how out-of-class activities could improve student participation and course effectiveness. While implementing these strategies, work collaboratively with your grade-level colleagues to ensure that students aren’t overloaded with assignments and thus experience chapter reading, video, and PowerPoint slide overload. If several teachers are using

Box 2. Additional Resources

For readers who wish to learn more about the flipped classroom, the following starter list of resources is provided, along with the references:

- Flipped Learning Workshop Video, “The Purpose of Technology in the Classroom”: https://www.youtube.com/watch?v=TPGpednPvm0E&list=PLYAiuQvnV5H5liHld4mR8a-XyY-OmEynhHf.

44 The Journal of Adventist Education • July-September 2017 http://jae.adventist.org
the flipped-classroom approach with the same grade level, they may need to integrate and streamline the out-of-class work so that the strategy does not become counterproductive.

This article has been peer reviewed.

Deril Wood, PhD, is an Assistant Professor in the Department of Education at Oakwood University, Huntsville, Alabama, U.S.A.

Caroline Lipman, MA, is a Math and Science Teacher at Bass Memorial Academy in Lumberton, Mississippi, U.S.A. She earned her bachelor’s degree in Education from Oakwood University and her Master’s from Western Governors University, Salt Lake City, Utah, U.S.A.

NOTES AND REFERENCES

4. Ibid., 83.

6. Bergmann and Sams, “Flip Your Classroom: Reach Every Student in Every Class Every Day.”

14. Ibid.

15. Jose Montelongo and Roberta Herter, “Using Technology to Support Expository Reading and Writing in Science Classes.”

16. Ibid.

17. Ibid.

18. Ibid.

19. Ibid.

20. Ibid.

21. Jose Montelongo and Roberta Herter, “Using Technology to Support Expository Reading and Writing in Science Classes.”
then the “sound of sheer silence” through which God spoke and asked: “What are you doing here, Elijah?” (1 Kings 19:11-14, NRSV). In the stillness, God spoke . . . and still speaks. His words encourage renewed focus on mission and promise wisdom to help us (re-)envision effective ways to accomplish the same. As educators, we MUST make time for physical restoration, mental renewal, emotional balance, and renewed focus and zeal for the rendering of faithful and fruitful service to God.

In this issue, Joel Raveloharimisy offers an invitation to step away from the busyness of life and consider spiritual imperatives that will strengthen the Adventist teacher’s relationship with Jesus and impact student-educator interactions. Also, Ty-Ron Douglas (available on the JAE App and online) challenges educators to (re-)envision and reclaim the “Big Truths” that guide our practice and help us reaffirm our purpose as Adventist educators.

The remaining articles are written by teachers who currently utilize various best-practice approaches in their classrooms: approaches to teaching writing to English as a Second Language (ESL) students (Laurie Stankavich and Amanda Livanos; and Christian Stuart); specific examples focusing the future and charting a new course amidst the demands of our hyper-busy lives will not only benefit us as educators, but also our students, many of whom face the same challenges. May these last few moments before a new academic year or semester give us pause to respond to God’s call to “‘Come and talk with me’” (Psalm 27:8, NLT)⁸ and may our response be “The Sovereign LORD has spoken to me, and I have listened . . .” (Isaiah 50:4, NLT).

NOTES AND REFERENCES

6. Ibid.

In this pithy, to-the-point book, Knight has encapsulated the value, function, and goals of Adventist education. It’s a must-read for every school-board member, teacher, administrator, and pastor. Knight states candidly and poignantly that any Adventist school, teacher, or curriculum that is not distinctly Adventist is a redundancy unneeded in today’s educational landscape. He stresses that we must recapture—in every classroom—the reason we exist: to restore our children into the image of our Creator.”

–Larry Blackmer, EdD, Vice President for Education, North American Division of Seventh-day Adventists

2016 • 164 pp.
ISBN: 978-1-940980-12-6
$ 14.99
ORDER NOW

ADVENTIST BOOK CENTER
1-800-765-6955

ANDREWS UNIVERSITY PRESS
1-800-467-6369
universitypress.andrews.edu
Email: aupo@andrews.edu
So many ways of accessing issues of *College and University Dialogue* in English, French, Italian,* Portuguese and Spanish!

Looking for a new, color, printed version? **We have it!**
Write to: TorskeL@gc.adventist.org

Like to browse the Web?
Visit dialogue.adventist.org

Prefer to download the new Dialogue App for your smartphones and tablets?
Search for Adventist Dialogue

*C*Available only on educazione.avventista.it/dialogue/